University of Cambridge > > Microsoft Research Cambridge, public talks > High-throughput, Multiscale modelling approaches for understanding bacterial signalling

High-throughput, Multiscale modelling approaches for understanding bacterial signalling

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

Bacterial chemoreceptor proteins respond to local nutrients and toxins through binding events in receptor domains in the periplasm, causing a conformational change which is propagated into the cell where it triggers a signalling event through downstream effectors and ultimately changes in bacterial motion. Though the biophysical mechanism of signalling through the membrane has been studied extensively through a range of approaches, including mutagenesis of the transmembrane region, the precise mechanism is still unclear. Here I describe a novel high throughput approach to molecular dynamics simulation of transmembrane helices in a bilayer, where the process of building, running and analysing simulations across a cluster is entirely automated. Using this approach, I have been able to identify the role for small (0.15 nm) swinging-piston motions in carrying signals across the membrane. Alongside this, I describe simulations of complete 22 nm chemoreceptor models in a range of realistic environments, from model bilayers to 70 nm vesicles. Taken together, these approaches allow me to propose a mechanism of signal transduction across the membrane.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity