University of Cambridge > > Isaac Newton Institute Seminar Series > Relative spherical objects and spherical fibrations

Relative spherical objects and spherical fibrations

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Moduli Spaces

Seidel and Thomas introduced some years ago a notion of a spherical object in the derived category D(X) of a smooth projective variety X. We introduce a relative analogue of this notion by defining what does it mean for an object E of the derived category D(Z x X) of a fiber product of two schemes Z and X to be spherical over Z. For objects of D(Z x X) which are orthogonal over Z (these are categorical equivalents of a subscheme of X fibered over Z) we show an object to be spherical over Z if and only if it possesses certain cohomological properties similar to those in the original definition by Seidel and Thomas. We then interpret this geometrically for the special case where our objects are actual flat subschemes of X flatly fibered over Y. This is a joint work with Rina Anno of UChicago.”

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity