University of Cambridge > > Isaac Newton Institute Seminar Series > Convex decay of entropy in interacting systems

Convex decay of entropy in interacting systems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Discrete Analysis

For a Markov process, the exponential decay of relative entropy with respect to the invariant measure corresponds to a functional inequality sometimes called “Modified logarithmic Sobolev inequality” (MLSI). We consider a stronger inequality, that, besides exponential decay, implies that the relative entropy is convex in time. The advantage of this inequality is that it can be obtained, for some systems of interacting particle, via a Bakry-Emery-type approach, avoiding more complicated martingale methods. After having illustrated this approach, I will present some recent progresses on the subject, obtained in collaboration with G. Posta.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity