University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Nonlinear filtering algorithms based on averaging over characteristics and on the innovation approach.

Nonlinear filtering algorithms based on averaging over characteristics and on the innovation approach.

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Stochastic Partial Differential Equations (SPDEs)

It is well known that numerical methods for nonlinear filtering problems, which directly use the Kallianpur-Striebel formula, can exhibit computational instabilities due to the presence of very large or very small exponents in both the numerator and denominator of the formula. We obtain computationally stable schemes by exploiting the innovation approach. We propose Monte Carlo algorithms based on the method of characteristics for linear parabolic stochastic partial differential equations. Convergence and some properties of the considered algorithms are studied. Variance reduction techniques are discussed. Results of some numerical experiments are presented. The talk is based on a joint work with G.N. Milstein.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity