Least-action filtering
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani.
Stochastic Partial Differential Equations (SPDEs)
This talk studies the filtering of a partially-observed multidimensional diffusion process using the principle of least action, equivalently, maximum-likelihood estimation. We show how the most likely path of the unobserved part of the diffusion can be determined by solving a shooting ODE , and then we go on to study the (approximate) conditional distribution of the diffusion around the most likely path; this turns out to be a zero-mean Gaussian process which solves a linear SDE whose time-dependent coefficients can be identified by solving a first-order ODE with an initial condition. This calculation of the conditional distribution can be used as a way to guide SMC methods to search relevant parts of the state space, which may be valuable in high-dimensional problems, where SMC struggles; in contrast, ODE solution methods continue to work well even in moderately large dimension.
This talk is part of the Isaac Newton Institute Seminar Series series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|