COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > The Haar state of O(SL_q(3)) on a monomial basis
The Haar state of O(SL_q(3)) on a monomial basisAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact nobody. QIAW02 - New trends at the intersection of quantum information theory, quantum groups and operator algebras The Haar measure of compact Lie groups plays an important role in the representation theory and many other aspects of Lie groups. On O(SL_q(3)), the quantized algebra of coordinate function of SL(3), there is a q-deformed Haar measure called the Haar state. Since O(SL_q(3)) is a cosemisimple Hopf-* algebra, the Haar state of O(SL_q(3)) is determined by its Peter-Weyl decomposition. However, the explicit expressions of the matrix coefficients are still unclear and evaluating the Haar state using matrix coefficeints is inefficient. In this talk, we define a monomial basis on O(SL_q(3)) and give the explicit expressions of the Haar states of these monomials as rational polynomials in variable q. Then, we will briefly discuss the methods used in the computation. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsSurface, Microstructure & Fracture group Cambridge University Behavioural Insights Team (CUBIT) Signal Processing and Communications Lab Reading GroupOther talksTropical Butterflies: using museum collections to study changes in biodiversity On the Reception of Christian Thomasius's Political Thought in Protestant Northern Germany Title TBC Dynamical decoupling of open quantum systems Machine learning: applications to cancer MK-7602: A Promising Breakthrough in Antimalarial Invention from an Efficient Academia/Industry Collaboration |