University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction

Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction

Add to your list(s) Download to your calendar using vCal

  • UserYuejie Chi (Carnegie Mellon University)
  • ClockFriday 19 July 2024, 10:00-11:00
  • HouseExternal.

If you have a question about this talk, please contact nobody.

DMLW01 - International workshop on diffusions in machine learning: foundations, generative models, and optimisation

In a great number of tasks in science and engineering, the goal is to infer an unknown image from a small number of noisy measurements collected from a known forward model describing certain sensing or imaging modality. Due to resource constraints, this image reconstruction task is often extremely ill-posed, which necessitates the adoption of expressive prior information to regularize the solution space. Score-based diffusion models, thanks to its impressive empirical success, have emerged as an appealing candidate of an expressive prior in image reconstruction. In order to accommodate diverse tasks at once, it is of great interest to develop efficient, consistent and robust algorithms that incorporate unconditional score functions of an image prior distribution in conjunction with flexible choices of forward models. This work develops an algorithmic framework for employing score-based diffusion models as an expressive data prior in nonlinear inverse problems with general forward models. Motivated by the plug-and-play framework in the imaging community, we introduce a diffusion plug-and-play method (DPnP) that alternatively calls two samplers, a proximal consistency sampler based solely on the likelihood function of the forward model, and a denoising diffusion sampler based solely on the score functions of the image prior. The key insight is that denoising under white Gaussian noise can be solved rigorously via both stochastic (i.e., DDPM -type) and deterministic (i.e., DDIM -type) samplers using the same set of score functions trained for generation. We establish both asymptotic and non-asymptotic performance guarantees of DPnP, and provide numerical experiments to illustrate its promise in solving both linear and nonlinear image reconstruction tasks. To the best of our knowledge, DPnP is the first provably-robust posterior sampling method for nonlinear inverse problems using unconditional diffusion priors. 

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity