University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > An analysis of the noise schedule for score-based generative models

An analysis of the noise schedule for score-based generative models

Add to your list(s) Download to your calendar using vCal

  • UserAntonio Ocello (Ecole Polytechnique Paris)
  • ClockTuesday 16 July 2024, 15:00-15:30
  • HouseExternal.

If you have a question about this talk, please contact nobody.

DMLW01 - International workshop on diffusions in machine learning: foundations, generative models, and optimisation

Score-based generative models (SGMs) aim at estimating a target data distribution by learning score functions using only noise-perturbed samples from the target. Recent literature has focused extensively on assessing the error between the target and estimated distributions, gauging the generative quality through the Kullback-Leibler (KL) divergence and Wasserstein distances. Under mild assumptions on the data distribution, we establish an upper bound for the KL divergence between the target and the estimated distributions, explicitly depending on any time-dependent noise schedule. Under additional regularity assumptions, taking advantage of favorable underlying contraction mechanisms, we provide a tighter error bound in Wasserstein distance compared to state-of-the-art results. In addition to being tractable, this upper bound jointly incorporates properties of the target distribution and SGM hyperparameters that need to be tuned during training.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity