University of Cambridge > Talks.cam > Language Technology Lab Seminars > Incremental Accumulation of Linguistic Context in Artificial and Biological Neural Networks

Incremental Accumulation of Linguistic Context in Artificial and Biological Neural Networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Panagiotis Fytas.

Accumulated evidence suggests that Large Language Models (LLMs) are beneficial in predicting neural signals related to narrative processing. The way LLMs integrate context over large timescales, however, is fundamentally different from the way the brain does it. In my study, we show that unlike LLMs that apply parallel processing of large contextual windows, the incoming context to the brain is limited to short windows of a few tens of words. We hypothesize that whereas lower-level brain areas process short contextual windows, higher-order areas in the default-mode network (DMN) engage in an online incremental mechanism where the incoming short context is summarized and integrated with information accumulated across long timescales. Consequently, we introduce a novel LLM that instead of processing the entire context at once, it incrementally generates a concise summary of previous information. As predicted, we found that neural activities at the DMN were better predicted by the incremental model, and conversely, lower-level areas were better predicted with short-context-window LLM .

This talk is part of the Language Technology Lab Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity