University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > PCF-GAN: generating sequential data via the characteristic function of measures on the path space

PCF-GAN: generating sequential data via the characteristic function of measures on the path space

Add to your list(s) Download to your calendar using vCal

  • UserHao Ni (University College London)
  • ClockWednesday 24 April 2024, 11:00-11:45
  • HouseExternal.

If you have a question about this talk, please contact nobody.

TMLW02 - SGD: stability, momentum acceleration and heavy tails

Generating high-fidelity time series data using generative adversarial networks (GANs) remains a challenging task, as it is difficult to capture the temporal dependence of joint probability distributions induced by time-series data. To this end, a key step is the development of an effective discriminator to distinguish between time series distributions. In this talk, I will introduce the so-called PCF -GAN, a novel GAN that incorporates the path characteristic function (PCF) as the principled representation of time series distribution into the discriminator to enhance its generative performance.  On the one hand, we establish theoretical foundations of the PCF distance by proving its characteristicity, boundedness, differentiability with respect to generator parameters, and weak continuity, which ensure the stability and feasibility of training the PCF -GAN. On the other hand, we design efficient initialisation and optimisation schemes for PCFs to strengthen the discriminative power and accelerate training efficiency. To further boost the capabilities of complex time series generation, we integrate the auto-encoder structure via sequential embedding into the PCF -GAN, which provides additional reconstruction functionality. Extensive numerical experiments on various datasets demonstrate the consistently superior performance of PCF -GAN over state-of-the-art baselines, in both generation and reconstruction quality. Lastly, an application of PCF -GAN to Levy area generation is presented, which shows its potential to accelerate the high-order SDE simulation. This talk is based on two papers: [https://arxiv.org/pdf/2305.12511.pdf] and [https://arxiv.org/pdf/2308.02452.pdf].

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity