University of Cambridge > > Isaac Newton Institute Seminar Series > Long-lived N-body disks

Long-lived N-body disks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Dynamics of Discs and Planets

Many of the same physical processes drive the evolution of circumstellar discs composed of dust grains, asteroids, planetesimals, planets, etc. This talk investigates the survival of such discs over Gyr timescales, using a unified approach that is applicable to all Keplerian discs of solid bodies. Monodisperse discs can be characterized locally by four parameters: surface density, semi-major axis, velocity dispersion, and size of the bodies. For a given set of these parameters, the disc must survive all dynamical processes, including gravitational instability, dynamical chaos, gravitational scattering, physical collisions, and radiation forces, that would lead to significant evolution over its lifetime. These processes lead to a rich set of constraints that strongly restrict the possible properties of long-lived discs. Within this framework, I also discuss the detection of planetesimal discs using radial velocity measurements, transits, microlensing, and the infrared emission from the planetesimals themselves or from dust generated by planetesimal collisions. A wide range of long-lived discs would not have been detected by present techniques.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity