University of Cambridge > > Algorithms and Complexity Seminar > Polynomial-Time Pseudodeterministic Construction of Primes

Polynomial-Time Pseudodeterministic Construction of Primes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Tom Gur.

A randomized algorithm for a search problem is pseudodeterministic if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time.

We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an unconditional polynomial-time randomized algorithm B such that, for infinitely many values of n, B(1^n) outputs a canonical n-bit prime p_n with high probability. More generally, we prove that for every dense property Q of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q. This improves upon a subexponential-time construction of Oliveira and Santhanam.

Our construction uses several new ideas, including a novel bootstrapping technique for pseudodeterministic constructions, and a quantitative optimization of the uniform hardness-randomness framework of Chen and Tell, using a variant of the Shaltiel-Umans generator.


This talk is part of the Algorithms and Complexity Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity