University of Cambridge > Talks.cam > Logic and Semantics Seminar (Computer Laboratory) > Coherence by Normalization for Linear Multicategorical Structures

Coherence by Normalization for Linear Multicategorical Structures

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Jamie Vicary.

We establish a formal correspondence between resource calculi and appropriate linear multicategories. We consider the cases of (symmetric) representable, symmetric closed and autonomous multicategories. For all these structures, we prove that morphisms of the corresponding free constructions can be presented by means of typed resource terms, up to a reduction relation and a structural equivalence. Thanks to the linearity of the calculi, we can prove strong normalization of the reduction by combinatorial methods, defining appropriate decreasing measures. From this, we achieve a general coherence result: morphisms that live in the free multicategorical structures are the same whenever the normal forms of the associated terms are equal. As further application, we obtain syntactic proofs of Mac Lane’s coherence theorems for (symmetric) monoidal categories.

This talk is part of the Logic and Semantics Seminar (Computer Laboratory) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity