University of Cambridge > Talks.cam > Artificial Intelligence Research Group Talks (Computer Laboratory) > Hybrid Multi-Modal Fusion for Heterogeneous Biomedical Data

Hybrid Multi-Modal Fusion for Heterogeneous Biomedical Data

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mateja Jamnik.

Technological advances in medical data collection such as high-resolution histopathology and high-throughput genomic sequencing have contributed to the rising requirement for multi-modal biomedical modelling, specifically for image, tabular, and graph data. Most multi-modal deep learning approaches use modality-specific architectures that are trained separately and cannot capture the crucial cross-modal information that motivates the integration of different data sources. This talk presents the Hybrid Early-fusion Attention Learning Network (HEALNet) – a flexible multi-modal fusion architecture, which a) preserves modality-specific structural information, b) captures the cross-modal interactions and structural information in a shared latent space, c) can effectively handle missing modalities during training and inference, and d) enables intuitive model inspection by learning on the raw data input instead of opaque embeddings. We conduct multi-modal survival analysis on Whole Slide Images and Multi-omic data on four cancer cohorts of The Cancer Genome Atlas (TCGA). HEAL Net achieves state-of-the-art performance, substantially improving over both uni-modal and recent multi-modal baselines, whilst being robust in scenarios with missing modalities.

You can also join us on Zoom

This talk is part of the Artificial Intelligence Research Group Talks (Computer Laboratory) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity