University of Cambridge > Talks.cam > Energy and Environment Group, Department of CST > Optimization-in-the-loop AI for energy and climate

Optimization-in-the-loop AI for energy and climate

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Madeline Lisaius.

Addressing climate change will require concerted action across society, including the development of innovative technologies. While methods from artificial intelligence (AI) and machine learning (ML) have the potential to play an important role, these methods often struggle to contend with the physics, hard constraints, and complex decision-making processes that are inherent to many climate and energy problems. To address these limitations, I present the framework of “optimization-in-the-loop AI,” and show how it can enable the design of AI models that explicitly capture relevant constraints and decision-making processes. For instance, this framework can be used to design learning-based controllers that provably enforce the stability criteria or operational constraints associated with the systems in which they operate. It can also enable the design of task-based learning procedures that are cognizant of the downstream decision-making processes for which a model’s outputs will be used. By significantly improving performance and preventing critical failures, such techniques can unlock the potential of AI and ML for operating low-carbon power grids, improving energy efficiency in buildings, and addressing other high-impact problems of relevance to climate action.

Priya Donti is the Co-founder and Executive Director of Climate Change AI, a non-profit initiative to catalyze impactful work at the intersection of climate change and machine learning, which she is currently running through the Cornell Tech Runway Startup Postdoc Program. She will also join MIT EECS as an Assistant Professor in Fall 2023. Her research focuses on machine learning for forecasting, optimization, and control in high-renewables power grids. Specifically, her work explores methods to incorporate the physics and hard constraints associated with electric power systems into deep learning models. Priya received her Ph.D. in Computer Science and Public Policy from Carnegie Mellon University, and is a recipient of the MIT Technology Review’s 2021 “35 Innovators Under 35” award, the Siebel Scholarship, the U.S. Department of Energy Computational Science Graduate Fellowship, and best paper awards at ICML (honorable mention), ACM e-Energy (runner-up), PECI , the Duke Energy Data Analytics Symposium, and the NeurIPS workshop on AI for Social Good.

This talk is part of the Energy and Environment Group, Department of CST series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity