University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Mean field theory in Inverse Problems: from Bayesian inference to overparameterization of networks

Mean field theory in Inverse Problems: from Bayesian inference to overparameterization of networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact nobody.

MDL - Mathematics of deep learning

Bayesian sampling and neural networks are seemingly two different machine learning areas, but they both deal with many particle systems. In sampling, one evolves a large number of samples (particles) to match a target distribution function, and in optimizing over-parameterized neural networks, one can view neurons particles that feed each other information in the DNN flow. These perspectives allow us to employ mean-field theory, a powerful tool that translates dynamics of many particle system into a partial differential equation (PDE), so rich PDE analysis techniques can be used to understand both the convergence of sampling methods and the zero-loss property of over-parameterization of ResNets. We showcase the use of mean-field theory in these two machine learning areas, and we also invite the audience to brainstorm other possible applications..  

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2022 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity