University of Cambridge > > CMIH Hub seminar series > Generative model-based super resolution and quality control for cardiac segmentation

Generative model-based super resolution and quality control for cardiac segmentation

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact J.W.Stevens.

In cardiac imaging, a high-resolution geometric representation of the heart is desired for accurate assessment of its anatomical structure and function. This is not easily available due to the limit of acquisition duration and respiratory/cardiac motion in clinical practice. Stacks of multi-slice 2D images are usually acquired in clinical routine and segmentation of these images provides a low-resolution representation of cardiac anatomy, which may contain artefacts caused by motion. Here we propose a novel latent optimisation framework that jointly performs motion correction and super resolution for cardiac image segmentations based on generative learning. Moreover, quality control of the automatic segmentation results is realised via the proposed framework.

Zoom link:

Meeting ID: 925 7540 3744 Passcode: 974971

This talk is part of the CMIH Hub seminar series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity