University of Cambridge > > Isaac Newton Institute Seminar Series > Inertia-gravity-wave generation: a geometric-optics approach

Inertia-gravity-wave generation: a geometric-optics approach

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

The generation of inertia-gravity waves in complex flows is examined using a geometric-optics approach. This approach considers the dynamics of a small-scale wavepacket in prescribed time-dependent, balanced flow. The wavepacket is assumed to be in the so called wave-capture regime, where the wave intrinsic frequency is negligible compared with the Doppler shift. The dynamics is reduced to a number of ordinary differential equations describing the evolution of the wavepacket position, of the wavevector, and of three scalar fields describing the wavepacket amplitude and polarisation. The approach clearly identifies two classes of wave-generation processes: unbalanced instabilities, associated with linear interactions between inertia-gravity waves, and spontaneous generation, associated with a conversion between vortical and inertia-gravity modes. Applications to idealised and realistic flows are discussed.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity