University of Cambridge > > Isaac Newton Institute Seminar Series > Large-scale motions in supersonic turbulent boundary layers

Large-scale motions in supersonic turbulent boundary layers

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

Wide-field and high-speed Particle Image Velocimetry measurements were performed in a Mach 2 supersonic turbulent boundary layer to characterise the structure of large-scale coherence. Instantaneous velocity fields in the logarithmic region reveal the presence of elongated uniform low- and high-speed regions. These elongated regions exhibit strong similarities with the large-scale motions found in incompressible boundary layers. Application of Taylor’s hypothesis together with high-speed PIV data indicates that these large-scale structures could extend over 30-40 boundary layer thickness in length. Alternately, these can interpreted as 5-10 boundary layer thickness long structures lasting over several integral time scales. Regardless of interpretation, these elongated (spatio-temporal) structures appear to be play a significant role in the dynamics of shock-induced turbulent boundary layer separation. A possible mechanism that relates the passage of these elongated structures to the frequency of unsteadiness of shock-induced separation will be presented.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity