University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Universal character of perturbation growth in near-wall turbulence

Universal character of perturbation growth in near-wall turbulence

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

Spatial instability of fully developed turbulent flow in a long straight circular pipe is investigated via DNS . The incompressible Navier-Stokes equations are solved with turbulent inflow velocity field extracted from auxiliary streamwise-periodic simulation which run in parallel with the main spatial simulation. In addition, small perturbations are introduced into the inlet and velocity difference between the flows with and without perturbations is analyzed. It is shown that mean perturbation amplitude $\varepsilon$ increases exponentially with distance downstream until saturating at the level comparable to the level of turbulent fluctuations in the flow. The rate of the exponential growth is found to be constant when normalized by viscous length, $\varepsilon\sim\exp(0.002x^+)$ over the considered Reynolds number range $140\leqslant\Re_\tau \leqslant320$. The universal character of perturbation growth is confirmed also by channel flow simulations

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity