University of Cambridge > > Isaac Newton Institute Seminar Series > Least squares regression on sparse grids

Least squares regression on sparse grids

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

ASCW01 - Challenges in optimal recovery and hyperbolic cross approximation

In this talk, we first recapitulate the framework of least squares regression on certain sparse grid and hyperbolic cross spaces. The underlying numerical problem can be solved quite efficiently with state-of-the-art algorithms. Analyzing its stability and convergence properties, we can derive the optimal coupling between the number of necessary data samples and the degrees of freedom in the ansatz space. Our analysis is based on the assumption that the least-squares solution employs some kind of Sobolev regularity of dominating mixed smoothness, which is seldomly encountered for real-world applications. Therefore, we present possible extensions of the basic sparse grid least squares algorithm by introducing suitable a-priori data transformations in the second part of the talk. These are tailored such that the resulting transformed problem suits the sparse grid structure.

Co-authors: Michael Griebel (University of Bonn), Jens Oettershagen (University of Bonn), Christian Rieger (University of Bonn)

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity