University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Optimal recovery using wavelet trees

Optimal recovery using wavelet trees

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

ASCW01 - Challenges in optimal recovery and hyperbolic cross approximation

This talk is concerned with the approximation of embeddings between Besov-type spaces defined on bounded multidimensional domains or (patchwise smooth) manifolds. We compare the quality of approximations of three different strategies based on wavelet expansions. For this purpose, sharp rates of convergence corresponding to classical uniform refinement, best $N$-term, and best $N$-term tree approximation will be presented. In particular, we will see that whenever the embedding of interest is compact, greedy tree approximation schemes are as powerful as abstract best $N$-term approximation and that (for a large range of parameters) they can outperform uniform schemes based on a priori fixed (hence non-adaptively chosen) subspaces. This observation justifies the usage of adaptive non-linear algorithms in computational practice, e.g., for the approximate solution of boundary integral equations arising from physical applications. If time permits, implications for the related concept of approximation spaces associated to the three approximation strategies will be discussed.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity