University of Cambridge > > Isaac Newton Institute Seminar Series > Supercompatibility and its role on fatigue in shape memory materials

Supercompatibility and its role on fatigue in shape memory materials

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

DNMW01 - Optimal design of complex materials

Functional shape memory alloys need to operate reversibly and repeatedly. This is especially crucial for many future applications such e.g. elastocaloric cooling, where more than ten million transformation cycles will be required. In recent years examples of unprecedented functional and structural fatigue resistance and lowered hysteresis in shape memory alloys have been achieved by combining conditions of supercompatibility between phases with suitable grain size and a favorable array of fine precipitates (1). The relative roles of these factors, especially in the case of the more demanding stress-induced phase transformations, will be discussed (2) also in view of elastocaloric applications. (1) Chluba, C.; Ge, W.; Lima de Miranda, R.; Strobel, J.; Kienle, L.; Quandt, E.; Wuttig, M.: Ultralow-fatigue shape memory alloy films, Science 348 (2015), 1004-1007. (2) Gu, H.; Bumke, L.; Chluba, C.; Quandt, E.; James, R.D.: Phase engineering and supercompatibility of shape memory alloys, Materials Today 21 (2018), 265-277.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity