University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Multilevel Emulation and History Matching of EAGLE: an expensive hydrodynamical Galaxy formation simulation.

Multilevel Emulation and History Matching of EAGLE: an expensive hydrodynamical Galaxy formation simulation.

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

UNQW04 - UQ for inverse problems in complex systems

We discuss strategies for performing Bayesian uncertainty analyses for extremely expensive simulators. The EAGLE model is one of the most (arguably the most) complex hydrodynamical Galaxy formation simulations yet performed. It is however extremely expensive, currently taking approximately 5 million hours of CPU time, with order of magnitude increases in runtime planned. This makes a full uncertainty analysis involving the exploration of multiple input parameters along with several additional uncertainty assessments, seemingly impossible. We present a strategy for the resolution of this problem, which incorporates four versions of the EAGLE model, of varying speed and accuracy, within a specific multilevel emulation framework that facilitates the incorporation of detailed judgements regarding the uncertain links between the physically different model versions. We show how this approach naturally fits within the iterative history matching process, whereby regions of input parameter space are identified that may lead to acceptable matches between model output and the real universe, given all major sources of uncertainty. We will briefly discuss the detailed assessment of such uncertainties as observation error and structural model discrepancies and their various components, and emphasise that without such assessments any such analysis rapidly loses meaning.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity