COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > When to lift (a function to higher dimensions) and when not
When to lift (a function to higher dimensions) and when notAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact INI IT. VMVW03 - Flows, mappings and shapes In the first part of my talk I will describe several instances where reformulating a difficult optimization problem into higher dimensions (i.e. enlarge the set of minimized variables) is beneficial. My particular interest are robust cost functions e.g. utilized for correspondence search, which serve as a prototype for general difficult minimization problems. In the second part I will describe problem instances of relevance especially in 3D computer vision, where reducing the set of involved variables (i.e. the opposite of lifting) is highly beneficial. In particular, I will clarify the relationship between variable projection methods and the Schur complement often employed in Gauss-Newton based algorithms. Joint work with Je Hyeong Hong and Andrew Fitzgibbon. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsOutreach SciComp@Cam: Scientific Computing in Cambridge Philosophy of Education Society of Great Britain: Cambridge BranchOther talksEMERGING EPIGENETICS: DETECTING & MODIFYING EPIGENETICS MARKS Kiwi Scientific Acceleration on FPGA Environmental shocks and demographic consequences in England: 1280-1325 and 1580-1640 compared Multi-scale observations of ocean circulation in the Atlantic Analytical Ultracentrifugation (AUC) Streptococcus suis - managing a global zoonotic pathogen of pigs |