University of Cambridge > > Isaac Newton Institute Seminar Series > Cancer ID - From Spectral Segmentation to Deep Learning

Cancer ID - From Spectral Segmentation to Deep Learning

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

VMVW02 - Generative models, parameter learning and sparsity

One of the most important challenges in health is the fight against cancer. A desired goal is the early detection and guided therapy of cancer patients. A very promising approach is the detection and quantification of circulating tumor cells in blood, called liquid biopsy. However, this task is similar to looking for needles in a haystack, where the needles even have unclear shapes and materials. There is a strong need for reliable image segmentation, classification and a better understanding of the generative composition of tumor cells. For a robust and reproducible quantification of tumor cell features, automatic multi-scale segmentation is the key. In recent years, new theory and algorithms for nonlinear, non-local eigenvalue problems via spectral decomposition have been developed and shown to result in promising segmentation and classification results. We analyze different nonlinear segmentation approaches and evaluate how informative the resulting spectral responses are. The success of our analysis is supported by results of simulated cells and first European clinical studies. In the last part of this talk we switch the viewpoint and study first results for deep learning of tumor cells. Via generative models there is hope for understanding tumor cells much better, however many mathematical questions arise. This is a joint work with Leonie Zeune, Stephan van Gils, Guus van Dalum and Leon Terstappen.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2022, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity