University of Cambridge > > Isaac Newton Institute Seminar Series > Ising model for melt ponds on Arctic sea ice

Ising model for melt ponds on Arctic sea ice

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

SIPW01 - Multi-scale modelling of ice characteristics and behaviour

Perhaps the most iconic feature of melting Arctic sea ice is the formation of distinctive, complex ponds on its surface during late spring. The evolution of melt ponds and their geometrical characteristics determines the albedo of sea ice, a key parameter in climate modeling. However, a theoretical understanding of this evolution, and predictions of geometrical features, have remained elusive. To address this fundamental problem in polar climate science, here we introduce a two dimensional random field Ising model for melt ponds. The ponds are identified as metastable states of the system, where the binary spin variable corresponds to the presence of melt water or ice on the sea ice surface. With only a minimal set of physical parameters, the model predictions agree very closely with observed power law scaling of the pond size distribution and critical length scale where melt ponds undergo a transition in fractal geometry.

This is joint work with  Ivan Sudakov, Courtenay Strong, and Kenneth M. Golden.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity