University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Vectorial metric compactification of symmetric spaces and affine buildings

Vectorial metric compactification of symmetric spaces and affine buildings

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

NPCW04 - Approximation, deformation, quasification

 In higher rank symmetric spaces and affine buildings, the natural
projection of segments in a closed Weyl chamber may be regarded as a
universal metric with vectorial values. It refines all Finsler
metrics.  Remarkably, many of the traditional basic properties of
CAT spaces still hold for the vectorial metric, providing similar
properties for all Finsler metrics in a unified way.  We will show
that the classical Busemann compactification construction can be
directly conducted in this context, giving a natural compactification
by vector-valued horofunctions.  These functions correspond to
strongly asymptotic classes of facets.  This compactification is
naturally homeomorphic to the maximal Satake compactification and
dominates all linear Finsler compactifications.


This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity