University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > A geometric approach to constructing conformal nets

A geometric approach to constructing conformal nets

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

OASW02 - Subfactors, higher geometry, higher twists and almost Calabi-Yau algebras

Conformal nets and vertex operator algebras are distinct mathematical axiomatizations of roughly the same physical idea: a two-dimensional chiral conformal field theory. In this talk I will present recent work, based on ideas of André Henriques, in which local operators in conformal nets are realized as “boundary values” of vertex operators. This construction exhibits many features of conformal nets (e.g. subfactors, their Jones indices, and their fusion rules) in terms of vertex operator algebras, and I will discuss how this allows one to use Antony Wassermann's approach to calculating fusion rules in a broad class of examples.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity