University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Counting loxodromics for hyperbolic actions

Counting loxodromics for hyperbolic actions

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

NPCW01 - Non-positive curvature in action

Consider a nonelementary action by isometries of a hyperbolic group G on a hyperbolic metric space X. Besides the action of G on its Cayley graph, some examples to bear in mind are actions of G on trees and quasi-trees, actions on nonelementary hyperbolic quotients of G, or examples arising from naturally associated spaces, like subgroups of the mapping class group acting on the curve graph.
We show that the set of elements of G which act as loxodromic isometries of X (i.e those with sink-source dynamics) is generic. That is, for any finite generating set of G, the proportion of X-loxodromics in the ball of radius n about the identity in G approaches 1 as n goes to infinity. We also establish several results about the behavior in X of the images of typical geodesic rays in G. For example, we prove that they make linear progress in X and converge to the boundary of X. This is joint work with I. Gekhtman and G. Tiozzo.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity