University of Cambridge > > Isaac Newton Institute Seminar Series > Epidemics on networks

Epidemics on networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact

SNAW04 - Dynamic Networks

In this talk we consider two extensions of the standard stochastic epidemic SIR (Susceptible-Infected-Recovered) on a configuration model network.  The first extension, which is joint work with Peter Neal (Lancaster University), incorporates casual contacts, i.e. with people chosen uniformly at random from the population.  The second extension, which is joint work with Tom Britton (Stockholm University) and David Sirl (University of Nottingham), involves the spread of an epidemic on a random network model which allows for tunable clustering,  degree correlation and degree distribution.  For each model, approximating branching processes are used to obtain a threshold parameter, which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak, and the (approximate) probability and relative final size of a major outbreak.  For the model with casual contacts, an embedding argument is used to derive a central limit theorem for the size of a major epidemic; similar methods lead to the asymptotic variance of the giant component in a configuration model random graph.  The theory is illustrated by numerical studies, which explore the impact of network properties on the outcome of an epidemic.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2017, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity