University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Scaling limits of a model for selection at two scales Joint with Shishi Luo

Scaling limits of a model for selection at two scales Joint with Shishi Luo

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

SDB - Stochastic dynamical systems in biology: numerical methods and applications

The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval [0,1] with dependence on a single parameter, λ. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on λ and the behavior of the initial data around 1. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity