University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Cellular signalling in T cells is captured by a tractable modular phenotypic model

Cellular signalling in T cells is captured by a tractable modular phenotypic model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

SDBW03 - Advances in numerical and analytic approaches for the study of non-spatial stochastic dynamical systems in molecular biology

T cells initiate adaptive immune responses when their T cell antigen receptors (TCRs) recognise antigenic peptides bound to major histocompatibility complexes (pMHC). The binding of pMHC ligands to the TCR can trigger a large signal transduction cascade leading to T cell activation, as measured by the secretion effector cytokines/chemokines. Although the signalling proteins involved have been identified, it is still not understood how the cellular signalling network that they form converts the dose and affinity of pMHC into T cell activation. Here we use a holistic method to infer the signalling architecture from T cell activation data generated by stimulating T cells with a 100,000-fold variation in pMHC affinity/dose. We observe bell-shape dose-response curves and a different optimal pMHC affinity at different pMHC doses. We show that this can be explained by a unique, tractable, and modular phenotypic model of signalling that includes kinetic proofreading with limited sign alling coupled to incoherent feedforward but not negative feedback. The work provides a complementary approach for studying cellular signalling that does not require full details of biochemical pathways.

Related Links

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity