COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Discrete and continuous modelling of cell mechanics: from adhesion to migration
Discrete and continuous modelling of cell mechanics: from adhesion to migrationAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact webseminars. Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation The talk is devoted to two different approaches to model and simulate processes occurring during cell migration. Firstly, a discrete computational model in 3D is presented to simulate the formation of cell-matrix adhesions on a single 3D matrix fibre. This model allows to analyse the importance of the alignment between the matrix fibre and the cell protrusion on the size of the focal adhesions. Secondly, a 1D multi-physics model of fluid-structure interaction to simulate the behaviour of a cell confined in a complex microfluidics device is introduced. Cells are modelled as a poroelastic material following recent experimental evidences whereas the fluid is modelled by using the Poiseuille equation, considering it as a laminar incompressible Newtonian fluid. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsAll transferable skills in the university: computing Churchill Archives Centre Department of German and Dutch Question and Answer with Stuart Corbridge Sustainable Development Research Seminars Generation to Reproduction SeminarsOther talksIntelligence and the frontal lobes Girton College 57th Founders’ Memorial Lecture with Hisham Matar: Life and Work Exploring the Galaxy's alpha-element abundances and globular cluster populations with hydrodynamic simulations Positive definite kernels for deterministic and stochastic approximations of (invariant) functions Succulents with Altitude |