University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Homogeneous dynamics, unitary representations, and Diophantine exponents

Homogeneous dynamics, unitary representations, and Diophantine exponents

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Interactions between Dynamics of Group Actions and Number Theory

We will describe an explicit quantitative form of the duality principle in homogeneous dynamics. This allows the reduction of a diverse set of quantitative equidistribution problems on homogeneous spaces G/H to the problem of giving explicit spectral bounds for the restriction of automorphic representations of G to the stability subgroup H. We will demonstrate this approach by deriving bounds for Diophantine approximation exponent on homogeneous varieties, a problem raised by Serge Lang already in 1965, but which have seen little progress since then. The Diophantine exponents we derive are in many cases best possible, a remarkable fact that follows from an important and useful representation-theoretic phenomenon which we will highlight. Based on Joint work with Alex Gorodnik (Bristol University) and on joint work with Anish Ghosh (TIFR Mumbai) and Alex Gorodnik.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2021 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity