University of Cambridge > > Microsoft Research Cambridge, public talks > IC3 Modulo Theories via Implicit Predicate Abstraction

IC3 Modulo Theories via Implicit Predicate Abstraction

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

We present a novel approach for generalizing the IC3 algorithm for invariant checking from finite-state to infinite-state transition systems, expressed over some background theories. The procedure is based on a tight integration of IC3 with Implicit (predicate) Abstraction, a technique that expresses abstract transitions without computing explicitly the abstract system and is incremental with respect to the addition of predicates. In this scenario, IC3 operates only at the Boolean level of the abstract state space, discovering inductive clauses over the abstraction predicates. Theory reasoning is confined within the underlying SMT solver, and applied transparently when performing satisfiability checks. When the current abstraction allows for a spurious counterexample, it is refined by discovering and adding a sufficient set of new predicates. Importantly, this can be done in a completely incremental manner, without discarding the clauses found in the previous search. The proposed approach has two key advantages. First, unlike current SMT generalizations of IC3 , it allows to handle a wide range of background theories without relying on ad-hoc extensions, such as quantifier elimination or theory-specific clause generalization procedures, which might not always be available, and can moreover be inefficient. Second, compared to a direct exploration of the concrete transition system, the use of abstraction gives a significant performance improvement, as our experiments demonstrate.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity