COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Regularity of Free Boundaries in Obstacle Type Problems - 3
Regularity of Free Boundaries in Obstacle Type Problems - 3Add to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani. Free Boundary Problems and Related Topics The aim of these lectures is to give an introduction to the regularity theory of free boundaries related to the obstacle problem. Besides the classical obstacle problem, we will consider the problem on harmonic continuation of Newtonian potentials, the thin obstacle problem, and their parabolic counterparts (as much as the time permits). Lecture 1. In this lecture, we will introduce the problems we will be working on and discuss initial regularity results for the solutions. Lecture 2. In this lecture, we will discuss the optimal regularity of solutions and give proofs by using monotonicity formulas. Lecture 3. In this lecture, we will consider the blowups of the solutions at free boundary points. We will then classify the blowups and thereby classify the free boundary points. Lecture 4. In this lecture, we will show how to prove the regularity of the “regular set” and obtain a structural theorem on the singular set. Suggested reading: [1] Petrosyan, Arshak ; Shahgholian, Henrik; Uraltseva, Nina . Regularity of free boundaries in obstacle-type problems. Graduate Studies in Mathematics, 136. American Mathematical Society, Providence, RI, 2012. x+221 pp. ISBN : 978-0-8218-8794-3 [2] Caffarelli, L. A. The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383—402. [3] Weiss, Georg S. A homogeneity improvement approach to the obstacle problem. Invent. Math. 138 (1999), no. 1, 23—50. [4] Caffarelli, Luis A. ; Karp, Lavi ; Shahgholian, Henrik . Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math. (2) 151 (2000), no. 1, 269—292. [5] Caffarelli, Luis ; Petrosyan, Arshak ; Shahgholian, Henrik . Regularity of a free boundary in parabolic potential theory. J. Amer. Math. Soc. 17 (2004), no. 4, 827—869. [6] Garofalo, Nicola ; Petrosyan, Arshak . Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177 (2009), no. 2, 415461. [7] Danielli, Donatella ; Garofalo, Nicola ; Petrosyan, Arshak ; To, Tung . Optimal regularity and the free boundary in the parabolic Signorini problem. arXiv:1306.5213 This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsHistory of Modern Medicine and Biology Art and Education Graduate Conference Cambridge University Press The obesity epidemic: Discussing the global health crisis Populations in Statistical genetics Cambridge Assessment NetworkOther talksExistence of Lefschetz fibrations on Stein/Weinstein domains Regulatory principles in human development and evolution Domain Uncertainty Quantification Group covariance functions for Gaussian process metamodels with categorical inputs Saving our bumblebees Sneks long balus An SU(3) variant of instanton homology for webs Discovering regulators of insulin output with flies and human islets: implications for diabetes and pancreas cancer Active bacterial suspensions: from individual effort to team work Towards a whole brain model of perceptual learning The Ethical and Legal Elements of Capacity and Consent |