University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Efficient Preconditioning of Laplacian Matrices for Computer Graphics

Efficient Preconditioning of Laplacian Matrices for Computer Graphics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

We present a new multi-level preconditioning scheme for discrete Poisson equations that arise in various computer graphics applications such as image colorization, edge-preserving decomposition, and geodesic distances on three-dimensional meshes. Our approach interleaves the selection of fine- and coarse-level variables with the removal of weak connections between potential fine-level variables (sparsification) and the compensation for these changes by strengthening nearby connections. By applying these operations before each elimination step and repeating the procedure recursively on the resulting smaller systems, we obtain a highly efficient multi-level preconditioning scheme with linear time and memory requirements. Our experiments demonstrate that our new scheme outperforms or is comparable with other state-of-the-art methods, both in terms of operation count and wall-clock time. This speedup is achieved by the new method’s ability to reduce the condition number of irregular Laplacian matrices as well as homogeneous systems. It can therefore be used for a wide variety of problems, including 3D meshes, without the need to carefully match the algorithm to the problem characteristics.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity