University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Physarum Polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks

Physarum Polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains

We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. The universality of percolation may be used as a general gauge in the analysis of transportation networks. Some malignant tissues derive their blood vessels not by angiogenesis, i.e., remodeling of existing vessels, but rather by denovo vascularization like embryos. Since topologically, percolation is independent from detailed mechanisms and even space dimensions, i.e., 2D versus 3D growth, it may serve as a reference point in space and time when comparing the dynamics of network formation in tumors of varying size and shape. Since restricting blood supply via hindering vessel percolation is paramount for suppressing tumor growth, this may foster development of antiangiogenic therapy.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity