COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > From Bounded to Unbounded Proofs of Correctness
From Bounded to Unbounded Proofs of CorrectnessAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins. This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending We describe automated techniques for proving program safety, that is, proving that every execution of a program does not cause a crash (e.g., via division by zero) and satisfies intended functionality (e.g., a programmer-supplied assertion). The core idea underlying our approach is that by examining a bounded version of the program, with a finite number of execution paths, we can generalize the proof of correctness to the whole program. Our generalization capitalizes on advances in SMT solving for path enumeration, novel interpolant generation techniques for DAGs of formulas, and a tight integration with abstract domains in order to improve interpolant “quality”. Our approach forms the basis of UFO , a C verifier we built in LLVM , that has recently won numerous categories in the 2013 Competition on Software Verification (SV-COMP). This talk is part of the Microsoft Research Cambridge, public talks series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCAMSED Events Nineteenth-Century Epic Cambridge Energy Conference The Kate Pretty Lecture Science meets Faith INI info aggregatorOther talksThrowing light on organocatalysis: new opportunities in enantioselective synthesis Psychology and Suicidal Behaviour What can we learn about cancer by modelling the data on it? The Knotty Maths of Medicine Viral infection dynamics in transplant recipients undergoing immunosuppression How could education systems research prompt a change to how DFIS works on education Graded linearisations for linear algebraic group actions 'The Japanese Mingei Movement and the art of Katazome' Alzheimer's talks Protein Folding, Evolution and Interactions Symposium Computing High Resolution Health(care) Feeding your genes: The impact of nitrogen availability on gene and genome sequence evolution |