COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Microsoft Research Machine Learning and Perception Seminars > Austerity in MCM - Land : Cutting the computational Budget
Austerity in MCM - Land : Cutting the computational BudgetAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins. This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending Will MCMC survive the “Big Data revolution”? Current MCMC methods for posterior inference, compute the likelihood of a model twice for every data-‐case in order to make a single binary decision: to accept or reject a proposed parameter value. Compare this with stochastic gradient descent that uses O(1) computations per iteration. In this talk I will discuss two MCMC algorithms that cut the computational budget of an MCMC update. The first algorithm, “stochastic gradient Langevin dynamics” (and its successor “stochastic gradient Fisher scoring”) performs updates based on stochastic gradients and ignore the Metropolis-‐Hastings step altogether. The second algorithm uses an approximate Metropolis-‐Hastings rule where accept/reject decisions are made with high (but not perfect) confidence based on sequential hypothesis tests. We argue that for any finite sampling window, we can choose hyper-‐parameters (stepsize, confidence level) such that the extra bias introduced by these algorithms is more than compensated by the reduction in variance due to the fact that we can draw more samples. We anticipate a new framework where bias and variance contributions to the sampling error a optimally traded-‐off. This talk is part of the Microsoft Research Machine Learning and Perception Seminars series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsQuantum Information Cambridge Countercultural Studies Research Group CAMSED Events SPIE Cambridge Student Chapter Public Engagement in the 21st Century Meeting the Challenge of Healthy Ageing in the 21st CenturyOther talksPTPmesh: Data Center Network Latency Measurements Using PTP Introduction to the early detection of cancer and novel interventions CPGJ Reading Group "Space, Borders, Power" Disaggregating goods Statistical Methods in Pre- and Clinical Drug Development: Tumour Growth-Inhibition Model Example Real Time Tomography X-Ray Imaging System - Geometry Calibration by Optimisation Speculations about homological mirror symmetry for affine hypersurfaces "Mechanosensitive regulation of cancer epigenetics and pluripotency" The frequency of ‘America’ in America 'Ways of Reading, Looking, and Imagining: Contemporary Fiction and Its Optics' SciScreen: Finding Dory |