University of Cambridge > Talks.cam > String Theory Seminars >  Dynamical simulations of holographic matrix models

Dynamical simulations of holographic matrix models

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Dorigoni.

The holographic AdS/CFT duality of string theory lets you study quantum black holes indirectly via their dual field theory states. Most existing studies have focused on equilibrium or static quantities, such as entropies, temperatures, etc., or near-equilibrium quantities such as thermal Green’s functions, linear transport coefficients and quasinormal modes. We wanted to learn about the real time, non-equilibrium dynamics of the field theory states and so made numerical simulations of some holographic matrix models [including flat space (BFSS) and plane wave (BMN) versions]. More precisely, these are simulations of the classical dynamics of the bosonic sectors of these models, which should be appropriate for high temperatures. This is in the same spirit as a molecular dynamics simulation of a fluid. I’ll present the current results from our ongoing analysis of these simulations, in which we observe thermalization, fluctuations and other behavior. I’ll then discuss and invite your comments on the relations to supergravity black holes and other future work. The talk is based on the papers arXiv:1104.5469 and arXiv:1211.3425.

This talk is part of the String Theory Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2014 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity