University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Stochastic Navier-Stokes Equations in unbounded 3D domains

Stochastic Navier-Stokes Equations in unbounded 3D domains

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Stochastic Partial Differential Equations (SPDEs)

Martingale solutions of the stochastic Navier-Stokes equations in 2D and 3D possibly unbounded domains, driven by the noise consisting of the compensated time homogeneous Poisson random measure and the Wiener process are considered. Using the classical Faedo-Galerkin approximation and the compactness method we prove existence of a martingale solution. We prove also the compactness and tighness cri-teria in a certain space contained in some spaces of cadlag functions, weakly cadlag functions and some Frechet spaces. Moreover, we use a version of the Skorokhod Embedding Theorem for nonmetric spaces.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity