University of Cambridge > > Isaac Newton Institute Seminar Series > Inverse estimation of fibre reinforced soft tissue of human gallbladder wall

Inverse estimation of fibre reinforced soft tissue of human gallbladder wall

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Inverse Problems

Cholecystectomy (surgical removal of the gallbladder) for gallbladder pain is the most common elective abdominal operation performed in the western world. However, the outcome is not entirely satisfactory as the mechanism of gallbladder pain is unclear. We have developed a mechanical model of gallbladder aiming to understand its mechanical behaviour. To apply this model to clinical situations, it is often necessary to estimate the material properties from non-invasive medical images. In this work, we present a non gradient-based optimization inverse approach for estimating the elastic modulus of human gallbladders from ultrasound images. Two forward problems are considered. One utilizes a linear orthotropic material model and tracks the Elastic moduli in the circumferential and longitudinal directions. The other is a nonlinear Holzapfel-Grass-Ogden model in which two families of fibres are embedded circumferentially in an otherwise homogeneous Neo-Hookean elastin matri x. These forward problems are solved using the finite element package Abaqus, and a python/Matlab based optimization algorithm is developed to search the global minimum of the error functional, which measures the difference in geometries from the numerical predictions and images. We will compare and analyse the results for six gallbladder samples, and discuss the outstanding challenging issues.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity