University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Optimal Design under Heteroscedasticity for Gaussian Process Emulators with replicated observations

Optimal Design under Heteroscedasticity for Gaussian Process Emulators with replicated observations

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Design and Analysis of Experiments

Computer models, or simulators, are widely used in a range of scientific fields to aid understanding of the processes involved and make predictions. Such simulators are often computationally demanding and are thus not amenable to statistical analysis. Emulators provide a statistical approximation, or surrogate, for the simulators accounting for the additional approximation uncertainty.

For random output, or stochastic, simulators the output dispersion, and thus variance, is typically a function of the inputs. This work extends the emulator framework to account for such heteroscedasticity by constructing two new heteroscedastic Gaussian process representations and proposes an experimental design technique to optimally learn the model parameters. The design criterion is an extension of Fisher information to heteroscedastic variance models. Replicated observations are efficiently handled in both the design and model inference stages. We examine the effect of such optimal designs on both model parameter uncertainty and predictive variance through a series of simulation experiments on both synthetic and real world simulators.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity