COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Integrating analog and digital modes of gene expression
Integrating analog and digital modes of gene expressionAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact nobody. SPL - New statistical physics in living matter: non equilibrium states under adaptive control Quantitative gene regulation at the population level can be achieved by two fundamentally different modes of regulation at individual gene copies. A “digital” mode involves binary ON/OFF expression states, with population level variation arising from the proportion of gene copies in each state, while an “analog” mode involves graded expression levels at each gene copy. At the Arabidopsis floral repressor FLOWERING LOCUS C (FLC), “digital” Polycomb silencing is known to facilitate quantitative epigenetic memory in response to cold. However, whether FLC regulation before cold involves analog or digital modes is unknown. Using quantitative fluorescent imaging of FLC mRNA and protein, together with mathematical modelling, we find that FLC expression before cold is regulated by both analog and digital modes. We demonstrate a temporal separation between the two modes, with analog preceding digital. The analog mode can maintain intermediate expression levels at individual FLC gene copies, allowing subsequent digital silencing, where these copies switch OFF stochastically and heritably without cold. The timescale of this one-way switch is governed by the strength of transcription: high transcription prevents switching, while low levels of transcription allow for rapid switching. In this way, analog and digital regulation are combined: analog regulation precedes digital with a time delay for the switch depending on the strength of transcription. Overall, our data present a new paradigm for gradual repression, elucidating how analog transcriptional and digital epigenetic memory pathways can be integrated. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsYes Trinity College Science Society 2022-23 Engineering Safe AIOther talksUsing synthetic biology to understand pattern-forming gene regulatory networks and their evolution Representation and computation in visual working memory Blown away: relative velocities and the first galaxies LMB Seminar: Cell volume and dry mass across time scales in cultured mammalian cells: from milliseconds in migrating and circulating cells to homeostasis during cycles of growth and division The many faces of stress: from developmental impacts to stress-related brain disorders Thinking evolutionary laws: technological trajectories and anthropological regularities |