COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Gradient flows and randomised thresholding: sparse inversion and classification
Gradient flows and randomised thresholding: sparse inversion and classificationAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact nobody. DDE - The mathematical and statistical foundation of future data-driven engineering Sparse inversion and classification problems are ubiquitous in modern data science and imaging. They are often formulated as non-smooth minimisation problems. In sparse inversion, we minimise, e.g., the sum of a data fidelity term and an L1/LASSO regulariser. In classification, we consider, e.g., the sum of a data fidelity term and a non-smooth Ginzburg–Landau energy. Standard (sub)gradient descent methods have shown to be inefficient when approaching such problems. Splitting techniques are much more useful: here, the target function is partitioned into a sum of two subtarget functions—each of which can be efficiently optimised. Splitting proceeds by performing optimisation steps alternately with respect to each of the two subtarget functions. In this work, we study splitting from a stochastic continuous-time perspective. Indeed, we define a differential inclusion that follows one of the two subtarget function’s negative subdifferential at each point in time. The choice of the subtarget function is controlled by a binary continuous-time Markov process. The resulting dynamical system is a stochastic approximation of the underlying subgradient flow. We investigate this stochastic approximation for an L1-regularised sparse inversion flow and for a discrete Allen–Cahn equation minimising a Ginzburg–Landau energy. In both cases, we study the longtime behaviour of the stochastic dynamical system and its ability to approximate the underlying subgradient flow at any accuracy. We illustrate our theoretical findings in a simple sparse estimation problem and also in low- and high-dimensional classification problems. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge University Wildlife Conservation Society's list EPOC Martin Centre, 37th Annual Series, ArchitectureOther talksSurvival in the Face of Adversity: Exploring Human Cooperation in the Paleolithic of Kazakhstan through an Agent-Based Model Seismic depth imaging: Pushing the boundaries of resolution and accuracy The Dawn of Artificial General Intelligence? 3d quantum gravity and Virasoro TQFT LMB Seminar: What do we know about (your) antibodies? Novel insights from novel techniques in mass spectrometry Delayed yielding of amorphous materials |