University of Cambridge > Talks.cam > NLIP Seminar Series > Investigating Reasons for Disagreement in Natural Language Inference

Investigating Reasons for Disagreement in Natural Language Inference

Add to your list(s) Download to your calendar using vCal

  • UserMarie-Catherine de Marneffe (FNRS – UCLouvain – The Ohio State University) World_link
  • ClockFriday 09 June 2023, 12:00-13:00
  • HouseComputer Lab, FW26.

If you have a question about this talk, please contact Michael Schlichtkrull.

Abstract:

Current practices of operationalizing annotations in crowdsourced datasets for natural language understanding (NLU) too often assume one single label per item. In this talk, I argue that NLU should investigate disagreement in annotations – human label variation (Plank 2022) – to fully capture human interpretations of language. I investigate how human label variation in natural language inference (NLI) arises, focusing on linguistic phenomena present in the sentences that lead to different interpretations. I also explore two modeling approaches for detecting items with potential disagreement (a 4-way classification with a Complicated label in addition to the three standard NLI labels, and a multilabel classification approach), and evaluate whether these approaches recall the possible interpretations in the data.

Bio:

Marie-Catherine de Marneffe obtained her PhD from Stanford University in 2012. She is an associate professor in Linguistics at The Ohio State University. She also got appointed as a FNRS Research Associate at UCLouvain in 2022. Her research focuses on developing computational linguistic methods that capture what is conveyed by language beyond the literal meaning of the words. In particular she works on “veridicality”: how do people interpret events they read about in the news—do they think such events really happen, did not happen, or are just a possibility? Primarily she wants to ground meanings in corpus data and show how such meanings can drive pragmatic inference. She has also contributed to defining the Stanford Dependencies and the Universal Dependencies representations. Her research has been funded by Google Inc. and the NSF .

This talk is part of the NLIP Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity