University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Admissibility of solutions of discrete dynamical systems

Admissibility of solutions of discrete dynamical systems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Discrete Integrable Systems

For discrete equations on a number field, the rate of growth of the heights of iterates is a good detector of integrability. In the case of a rational number, the height is just the maximum of the absolute value of the denominator and numerator. A solution is called admissible if its height grows much faster than the heights of the coefficients in the equation. For certain classes of equations it is shown that the existence of a single slow-growing admissible solution is enough to guarantee that the equation is a discrete Painleve equation. Inadmissible solutions are also explored. These solutions correspond to pre-periodic orbits for classical (autonomous) dynamical systems. The classical theory is extended to better understand these solutions in the non-autonomous setting.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity