COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Dispersive Shock Waves in the Benjamin-Ono Equation
Dispersive Shock Waves in the Benjamin-Ono EquationAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact nobody. HY2W04 - Statistical mechanics, integrability and dispersive hydrodynamics The Benjamin-Ono equation is a model for internal water waves in stratified fluids over an infinitely-deep lower layer. It is similar to the Korteweg-de Vries (KdV) equation, but with a different dispersive term that is nonlocal, involving the Hilbert transform. Like KdV, it has a Lax pair, although its inverse-scattering transform is not fully justified in all details to date. This talk will describe the formation of dispersive shock waves in solutions of the Benjamin-Ono equation. Weak small-dispersion limits have been established for ``quasi’’ initial-value problems in the whole line setting by Miller and Xu and in the periodic setting by Gassot. After describing those results, we will discuss Whitham modulation theory due to Dobrokhotov and Krichever and explain some preliminary work on strong asymptotics to resolve the oscillations in the shock zone. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsC.U. Ethics in Mathematics Society (CUEiMS) Department of GeographyOther talksWetting transition of active Brownian particles The Neuroscience of Reading: Tracing words from the page through the brain Welcome Predicting global dynamics of microbial communities from the molecular properties of cell-cell interactions Blood-stage malaria vaccine development: the impact of vaccine platform and timing of booster dosing |